Lecture 3:
High Quality 2D Rasterization

Image Synthesis
Stanford CS348b, Spring 2014
The Reyes Pipeline

Geometric primitives

- Split
- Bound
- Cull?
- Can Dice?
- Dice
- Shade
- Rasterize

Grids of micropolygons

Micropolygons
Show pixel-sized upolys (one pixel)

Micropolygons
Rasterization Review

- In camera space, the camera is at the origin, looking down the z axis
- The (perspective) projection matrix projects objects onto the 2D image plane
Micropolygon Size

- In the Reyes context, we’re only(*) rasterizing pixel-sized micropolygons
- Fairly regular workload; in contrast to GPUs...

(*) Mostly
How Do We Compute The Color of A Pixel?

- Which pixels does each primitive cover?
- What is the color of the first visible primitive at each pixel?
- Z-buffer: store depth of closest surface at each pixel, record its color.
What is a pixel?

Physical Display Pixels

2D Array of Point Samples
Computing Pixel Values as Integration

- Consider the area around a pixel as a continuous 2D area
 - A reasonable way to compute the value for the pixel is as the average color over this area

\[
\int f(x, y) \, dx \, dy
\]

- This integral can be computed as e.g. a Riemann sum

\[
\int f(x, y) \, dx \, dy \approx \frac{1}{N} \sum_{i} f(x_i, y_i)
\]
To Avoid Artifacts, Multiple Samples / Pixel

How many samples, where?
Two entire upcoming lectures on this....
To Avoid Artifacts, Multiple Samples / Pixel

1 sample/pixel

64 samples/pixel
A Triangle as the Interior of Three Edges
Geometric Building-Blocks

- The signed area of the parallelogram given by the vectors $v_1=(x_1,y_1)$ and $v_2=(x_2,y_2)$ is given by
 $$\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = (x_1 y_2) - (x_2 y_1)$$

- Half of this area is the area of the triangle they specify

- The area of a triangle with vertices $p_0=(x_0,y_0)$, $p_1=(x_1,y_1)$, and $p_2=(x_2,y_2)$ is
 $$\begin{vmatrix} x_1-x_0 & x_2-x_0 \\ y_1-y_0 & y_2-y_0 \end{vmatrix} = 0.5 \left((x_1-x_0)(y_2-y_0) - (x_2-x_0)(y_1-y_0)\right)$$
Edge Functions as Triangle Area

- Given an edge through vertices p_0 and p_1, and a point $p=(x,y)$, the area of the triangle they define is
 $\frac{1}{2} \left((x_1-x_0)(y-y_0) - (x-x_0)(y_1-y_0) \right)$

- Ignore the 0.5 for now, and define
 $e(x,y) = (x_1-x_0)(y-y_0) - (x-x_0)(y_1-y_0)$

- Or, $e(x,y) = ax + by + c$, where
 - $a = -(y_1-y_0)$, $b = (x_1-x_0)$, $c = (y_1-y_0)x_0 + (x_1-x_0)y_0$

- If $e(x,y) > 0$, (x,y) is inside the edge
Some Terminology, and a Note

- e_0 is the edge from (x_1, y_1) to (x_2, y_2),
 e_1 is the edge from (x_2, y_2) to (x_0, y_0), and
 e_2 is the edge from (x_0, y_0) to (x_1, y_1)

- We can also see $e(x, y) = ax + by + c$ as
 $e(x, y) = n \cdot (x, y) + c$, where $n = (a, b)$ is the normal vector to the edge

- Then $e(x, y) > 0$ means (x, y) is on the same side of the edge as the normal is pointing, etc.
Basic 2D Rasterization

- For each triangle, compute 3 edge functions e_0, e_1, e_2
 - For each candidate sample (x,y), see if all three edge functions are ≥ 0
 - If so, that sample is inside the triangle
 - Interpolate depth, update z-buffer
Edge Edge Cases

- What if \(e(x,y) = 0 \)?
 - Want to report a hit for exactly one of two triangles sharing an edge if this happens

- Tiebreaker rule:
 - If \(e(x,y) = 0 \), report hit for points on the “left” and “below” the triangle
 - Recall the line normal \((a,b)\):
 - \(a < 0 \): the edge is on the right
 - \(a > 0 \): the edge is on the left
Edge Case Handling

```c
bool insideEdge(float a, float b, float c, float x, float y) {
    float e = a * x + b * y + c;
    if (e > 0) return true;
    if (e < 0) return false;
    if (a > 0) return true;
    if (a < 0) return false;
    if (b > 0) return true;
    return false;
}
```

Basic

```c
// in setup
bool inc = (a > 0) || (a == 0 && b > 0);
...
bool insideEdge(float a, float b, float c, float x, float y,
                bool inc) {
    float e = a * x + b * y + c;
    if (e > 0) return true;
    if (e < 0) return false;
    else return inc;
}
```

More Efficient
Barycentric Interpolation

- \(e_0(x,y) = 2 \text{Area}(p_1, p_2, p) \)
 \(e_1(x,y) = 2 \text{Area}(p_2, p_0, p) \)
 \(e_2(x,y) = 2 \text{Area}(p_0, p_1, p) \)

- \(e_0 + e_1 + e_2 = 2 \text{Area}(p_0, p_1, p_2) \)

- Define \(w_i = e_i / (2 \text{Area}(p_0, p_1, p_2)) \)

- Can interpolate per-vertex values (depth, color, etc.) by
 \(w_0 v_0 + w_1 v_1 + w_2 v_2 \)

- Note \(w_i \geq 0 \) and \(w_0 + w_1 + w_2 = 1 \)
Rasterization 1.0

- In setup (once per triangle), compute:
 - $1/(2 \times \text{Triangle Area})$
 - If signed area < 0, backface cull
 - Edge function coefficients
 - Triangle bounding box
- For each sample, compute:
 - Edge function values
 - Interpolate depth, color, ..., if inside triangle
 - Use interpolated values to update z-buffer
// setup
float a0 = -(y2 - y1), b0 = x2 - x1, c0 = a0 * -x1 + b0 * -y1;
bool inc0 = (a0 > 0) || (a0 == 0 && b0 > 0);
// a1, b1, c1, inc1, a2, b2, c2, inc2...
float area = 0.5f * ((x1 - x0) * (y2 - y0) - (y1 - y0) * (x2 - x0));
float inv2Area = 1.f / (2.f * area);
if (area <= 0.) return; // backfacing
// compute sample bounds (x0,y0) to (x1,y1)...

// rasterize
for (float y = y0; y < y1; ++y) {
 float (float x = x0; x < x1; ++x) {
 float e0 = a0 * x + b0 * y + c0;
 if (e0 < 0. || (e0 == 0. && !inc0) continue;
 // compute and check e1 and e2

 float w0 = e0 * inv2Area, w1 = e1 * inv2Area, w2 = e2 * inv2Area;
 float z = w0 * z0 + w1 * z1 + w2 * z2;
 if (z < depthBuffer[x][y]) {
 depthBuffer[x][y] = z;
 // interpolate r, g, b
 // update r, g, b in framebuffer
 }
 }
}
}
Incremental Evaluation of Edge Functions

- Perform incremental evaluation of the edge functions.
 - Recall $e(x,y) = a \times x + b \times y + c = 0$
 - If we have $e(x,y)$ and want $e(x+dx,y+dy)$:

\[
e(x+dx,y+dy) - e(x,y) = a(x+dx) + b(y+dy) + c - (a \times x + b \times y + c) \\
= a \times dx + b \times dy
\]

\[
e(x+dx,y+dy) = e(x, y) + a \times dx + b \times dy
\]
Incremental Evaluation Rasterizer

// compute sample bounds (x0,y0) to (x1,y1)...
// setup as before...
float e0 = a0 * x0 + b0 * y0 + c0;
float e0y = e0;
// e1, e2...

for (float y = y0; y < y1; ++y) {
 for (float x = x0; x < x1; ++x, e0 += a0, e1 += a1, e2 += a2) {
 if (e0 < 0. || (e0 == 0. && !inc0) continue;
 // check e1 and e2
 float w0 = e0 * inv2Area, w1 = e1 * inv2Area, w2 = e2 * inv2Area;
 float z = w0 * z0 + w1 * z1 + w2 * z2;
 if (z < depthBuffer[x][y]) {
 depthBuffer[x][y] = z;
 // interpolate r, g, b
 // update r,g, b in framebuffer
 }
 }
 e0 = (e0y += b0);
 e1 = (e1y += b1);
 e2 = (e2y += b2);
}
Tile Culling for 2D Rasterization

- Given edge with normal \((n_x, n_y)\), we can classify a single corner of the tile w.r.t. the line to see if the entire tile is “outside”
- Determine which corner to check:
 \[p = (x, y) = \begin{cases} x_1 & n_x \geq 0 \\ x_0 \end{cases}, \begin{cases} y_1 & n_y \geq 0 \\ y_0 \end{cases} \]
- If \(e(x, y) < 0\), all samples in the tile are culled
- Can also detect tiles that are completely inside the triangle...
// compute sample bounds (x0,y0) to (x1,y1)...
int tx0 = x0 >> logTileSize, tx1 = (x1 + tileSize - 1) >> logTileSize;
int ty0 = y0 >> logTileSize, ty1 = (y1 + tileSize - 1) >> logTileSize;
// setup as before...
// e0, e0y, e1, e1y, e2y, ...
float e0tile = a0 * (tx0 * tileSize + (a0 > 0 ? tileSize : 0) +
b0 * (ty0 * tileSize + (b0 > 0 ? tileSize : 0) + c0;
float e0tiley = e0tile;
// e1tile, e2tile
for (float ty = ty0; ty < ty1; ++ty) {
 for (float tx = tx0; tx < tx1; ++tx, e0tile += a0*tileSize,
 e1tile += a1*tileSize, e2tile += a2*tileSize) {
 if (e1tile < 0. || e1tile < 0. || e2tile < 0.)
 continue;
 else /* rasterize samples inside tile */ }
 e0tile = (e0tiley += b0 * tileSize);
e1tile = (e1tiley += b1 * tileSize);
e2tile = (e2tiley += b2 * tileSize);
}
Hierarchical Tile Culling
Reyes Implications for Rasterization

- Recall that we’re rasterizing grids of quads / triangles
 - Each edge is shared by 2 triangles (just opposite sign)
 - Rasterize pairs of triangles from grids, ...
- Don’t have to worry about clipping
 - Split / cull ensures no triangles spanning z=0
- Triangles are generally all the same size
- Triangles are generally well-proportioned
Occlusion Culling

- Maintain conservative z-buffer during rasterization
- Support the query: given a bbox in pixel coordinates with z_{min} nearest depth, is that box definitely hidden?
- Use to cull primitives during split/dice
- Can also cull grids, triangles during rasterization
Occlusion Culling: Hierarchical Z-Buffer

Basic Per-Sample Z-Buffer

compute maximum of z depths
Occlusion Culling: Hierarchical Z-Buffer

If triangle $z_{\text{min}} > \text{aggregate } z_{\text{max}}$ values for overlapping hierarchical z-buffer regions, can cull
Transparency

- Transparency is a key visual effect: glass, smoke/fog, ...
 - Also, helps with anti-aliasing when rendering hair
- Need first opaque object and transparent layers
- Requires sorting visible points by depth

$$\text{Final color} = \text{color()} + \text{transmittance()} \ast \left(\text{color()} + \text{transmittance()} \ast \left(\text{color()} + \text{transmittance()} \ast \left(\text{color()} + \text{transmittance()} \ast \text{color()} \right) \right) \right)$$
A-Buffer Transparency

- Store a linked-list of transparent fragments at each sample

Each fragment stores color, transmittance, depth

- When done rasterizing, sort each list, apply compositing equation

+ s: it gives the correct result!

- s: unbounded memory requirement

```
struct PixelSample {
    Color rgb;
    float z;
    Fragment *head;
};

struct Fragment {
    Color rgb, tr;
    float z;
    Fragment *next;
};
```
Adaptive Order-Independent Transparency

Final color = color() +

transparency() * color() +
transparency() * color() +
transparency() * color() +
transparency() * color()
#define N 8

struct AOITNode {
 Color rgb, T;
 float z;
};

struct PixelSample {
 Color rgb;
 float z;
 AOITNode nodes[N];
};

Final color = color() +
transparency() * color() +
transparency() * color() +
transparency() * color() +
transparency() * color()
Reyes A-buffer

- Many visibility samples per pixel (recall: 64-128)
- Many visible points per sample (under conditions of significant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel
4 visible points per sample (rgb,a,z)

~10 GB A-buffer !!!
Reyes Implementations use Bucketing

- Image is split into buckets of ~32x32 pixels
- Goal is to keep the framebuffer for just one bucket in memory

 for each primitive, place in screen bucket
 for each bucket
 allocate framebuffer for bucket
 for each primitive
 split-dice to create grids // each split, cull primitives falling outside of bucket
 shade + rasterize grids

- Reduces memory for image to a single bucket’s worth
- Increases memory needs for primitives, grids, micropolygons
 - Need to hold on to ones that cover multiple buckets
Acknowledgement

- Slides 3, 33, and 34 were provided by Kayvon Fatahalian.