Lecture 6:
3D and 5D Rasterization

Image Synthesis
Stanford CS348b, Spring 2013
Higher-Dimensional Rasterization

- “Spending lots more processing time to render blurry things”

- Motion blur: avoid strobing with fast-moving objects
 - Three dimensions: two spatial (on image), time

- Defocus blur: simulate camera depth of field
 - Four dimensions: two spatial (image), two spatial (lens)

- Motion + defocus blur
 - Five dimensions...
3D Rasterization

- Triangle vertex positions are now a function of time
- Pixel values now come from an integral over both area & time

\[\int \int f(x, y, t) \, dx \, dy \, dt \approx \frac{1}{N} \sum_{i} f(x_i, y_i, t_i) \]

- Image samples are now \((x_i, y_i, t_i)\)
- Simplifications:
 - Assume linear vertex motion
 - In Reyes, we only shade at a single point in time
Blurry Big Guy
Rendering at Four Distinct Times
Sixteen Times
64 Times
Errors From Shading Once, Linear Motion

- No Motion
- 30° rotation
Errors From Shading Once, Linear Motion

No Motion

30° rotation
Errors From Shading Once, Linear Motion

No Motion

30° rotation

120° rotation

All three should be the same!
Four Samples Per Pixel

Low-Discrepancy Time Samples

Fixed Time Samples
Sixteen Samples Per Pixel

Low-Discrepancy Time Samples

Fixed Time Samples
Sixty-Four Samples Per Pixel

Low-Discrepancy Time Samples

Fixed Time Samples
2D Rasterization Review

- For 2D rasterization, we found raster coordinates \((x_r, y_r)\) using the projection matrix \(M_p\), the raster matrix \(M_r\), and a homogeneous divide:

\[
(x', y', z', w')^T = M_r M_p (x, y, z, 1)^T
\]
\[
(x_r, y_r) = (x'/w', y'/w')
\]

- We then rasterized the triangle formed by these coordinates

- ...this approach doesn’t work in the presence of motion blur
Interpolating Triangle Positions

- In 3D, consider a vertex with linear motion moving from v_0 to v_1
 $$v(t) = (1-t) v_0 + t v_1$$
- The standard form of the projection matrix is
 $$M_p = \begin{pmatrix}
 a & 0 & 0 & 0 \\
 0 & b & 0 & 0 \\
 0 & 0 & c & d \\
 0 & 0 & e & 0 \\
\end{pmatrix}$$

What happens when we project $v(t)$?
Interpolating Triangle Positions

- Projecting \(v(t) = (1-t) v_0 + t v_1 \):

\[
M_p \ v(t)^T = (x', y', z', w') = (a ((1-t) x_0 + t x_1), ..., e ((1-t) z_0 + t z_1))
\]

- Raster coordinates as a function of time:

\[
x_r(t) = x'/w' = \frac{a ((1-t) x_0 + t x_1)}{e ((1-t) z_0 + t z_1)}
\]

- ...this is not in general equal to first projecting \(v_0 \) and \(v_1 \) to raster coordinates and interpolating:

\[
(1-t) \ \frac{a x_0}{e z_0} + t \ \frac{a x_1}{e z_1}
\]

→ Must interpolate \(x(t), y(t), w(t) \) individually, then divide by \(w(t) \)
Bounding Vertex Positions

- Projected vertex position is a function of time, e.g.

\[x_r(t) = \frac{x'(t)}{w'(t)} = \frac{(1 - t)x_0 + tx_1}{(1 - t)w_0 + tw_1} \]

- Need lower and upper bounds over time range \([t_0, t_1]\) to bound pixel range of the vertex. How to do this?
Bounding Vertex Positions

- Projected vertex position is a function of time, e.g.
 \[
 x_r(t) = \frac{x'(t)}{w'(t)} = \frac{(1 - t)x_0 + tx_1}{(1 - t)w_0 + tw_1}
 \]

- Need lower and upper bounds over time range \([t_0, t_1]\) to bound pixel range of the vertex. How to do this?

- Option 1: calculus
 - Min/max are either at \(t_0\), \(t_1\), or where derivative is 0

- Option 2: for min, compute min of \(x(t)\), max of \(w(t)\), divide...
Point in Moving Triangle Tests

- Time-continuous edge functions
 - $e(x,y,w,t)$
- Interpolate vertex positions and compute barycentric coordinates
- Both of these are much more expensive than 2D rasterization
 - Best-case 2D rasterization tested a sample with 3 ADDs of incremental cost
 - Here: 18 ADDs, 21 MULs per sample :-(

Stanford CS348b, Spring 2013
Another Challenge of 3D Rasterization

- Bounds of a moving triangle may cover many pixels
- Yet: the number of samples that hit the triangle is proportional to the triangle’s area
 - Think about this carefully
Interval Algorithm

- Decompose time range into a set of N intervals
 - $[0, 1/N), [1/N, 2/N), ...$
- For each interval:
 - Compute bounding box for triangle motion over interval
 - Find samples inside the bound
 - Only test samples that have a time inside the interval
- Well-designed sample representation eliminates search for sample to test
How Many Intervals?

- It depends on how much things are moving...

<table>
<thead>
<tr>
<th># intervals</th>
<th>16</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1046ms</td>
<td>1361ms</td>
<td>2076ms</td>
</tr>
<tr>
<td></td>
<td>293ms</td>
<td>592ms</td>
<td>1457ms</td>
</tr>
<tr>
<td></td>
<td>117ms</td>
<td>620ms</td>
<td>3098ms</td>
</tr>
</tbody>
</table>

Time to render moving bigguy at 1080p, 16 samples per pixel
Interleaved Sampling

- Recall averaging N images together for motion blur
 - Equivalent to using same N time sample values in each pixel

Interleaved: have a multiple of N fixed time samples
- Interleave assignment of samples to pixel areas
Interleaved Sampling Comparisons

Fixed

Interleaved 2x2

Low-Discrepancy
Culling for Motion Blur

- Backface culling is tricky
 - Triangle may be back-facing at the start and end time, yet front-facing in the middle!
Culling for Motion Blur

- Backface culling is tricky
 - Triangle may be back-facing at the start and end time, yet front-facing in the middle!
- Can also apply tile culling (tricky!)
 - As before, entire tiles can be culled
Culling for Motion Blur

- Backface culling is tricky
 - Triangle may be back-facing at the start and end time, yet front-facing in the middle!

- Can also apply tile culling (tricky!)
 - As before, entire tiles can be culled
 - Can also compute the time interval the triangle overlaps a tile, only test samples with times within that interval
 - Unfortunately, effective sample patterns are designed to have very different time values at spatially-nearby locations...
Depth of Field

less depth of field

more depth of field

wider aperture

smaller aperture

London and Upton,
Thin Lens Model

Focal Length, F, is the distance behind the lens where parallel rays focus.

Lens diameter is F/n, where n is the lens's f-number.
Gaussian Lens Formula

Points at distance z focus at distance z' behind the lens given by

$$\frac{1}{F} = \frac{1}{z} + \frac{1}{z'}$$

Gaussian Lens Formula

Points at distance \(z \) focus at distance \(z' \) behind the lens given by

\[
\frac{1}{F} = \frac{1}{z} + \frac{1}{z'}
\]

Lenses are focused by moving them closer to/farther from the image plane.

Thin Lens Demonstration

http://graphics.stanford.edu/courses/cs178-10/applets/gaussian.html
Defocus Blur

Lens is focused at depth z_f; points at other depths image to an area on the image plane: the circle of confusion
Defocus Blur

Lens is focused at depth z_f; points at other depths image to an area on the image plane: the circle of confusion
Finding the Size of the Circle of Confusion

What is d_c, the diameter of the circle of confusion of a point at depth z?

We know z'_i, the image plane position, and the lens diameter d.

We can compute z' from F and z:

$$\frac{1}{F} = \frac{1}{z} + \frac{1}{z'}$$

Similar triangles:

$$\frac{d_c}{(z'_i - z')} = \frac{d}{z'}$$

Solve:

$$d_c = d \mid z'_i - z' \mid (1/F - 1/z)$$
Finding the Size of the Circle of Confusion

What is \(d_c\), the diameter of the circle of confusion of a point at depth \(z\)?

We know \(z'_i\), the image plane position, and the lens diameter \(d\).

We can compute \(z'\) from \(F\) and \(z\):

\[
\frac{1}{F} = \frac{1}{z} + \frac{1}{z'}
\]

Similar triangles:

\[
d_c/(z'_i-z') = d/z'
\]

Solve:

\[
d_c = d \mid z'_i - z' \mid (1/F - 1/z)
\]
Defocus Rasterization

- Pixel values now come from an integral over both pixel area and lens area

\[
\int \int f(x, y, u, v) \, dx \, dy \, du \, dv \approx \frac{1}{N} \sum_i f(x_i, y_i, u_i, v_i)
\]

- Image samples are now \((x_i, y_i, u_i, v_i)\)

- Given a point on the image \((x_i, y_i)\) and a point on the lens \((u_i, v_i)\), how do we determine if the sample is in the triangle?
DOF Rasterization

- We can also bound the circle of confusion at a depth z, d_z
- Parameterize lens over $[-1, 1]$

Looking through lens at point u, objects at depth z are shifted in x by $-u d_z$

For a 2D lens and a 3D scene, equivalent shift in y from v
DOF Rasterization

- For each triangle
 - Compute raster-space bounds, accounting for defocus blur expansion of bounds
 - For each sample \((x_i, y_i, u_i, v_i)\) in raster-space bounds
 - Offset triangle vertices in \((x, y)\) based on vertex z depth, \((u_i, v_i)\) sample values, and lens settings
 - Test sample point \((x_i, y_i)\) against offset triangle

- Not super speedy: 15 ADDs, 16 MULs per sample test
Culling for DOF Rasterization

- Backface culling is also not straightforward
- Interval and interleaved algorithms can be applied
 - If we consider a subset of the lens, then an out-of-focus point covers fewer pixels...
- Also, fairly complex tile culling tests have been derived
Motion Blur + Defocus Rasterization

- Now 5D: integrate over pixel area, lens area, and time

\[
\int \int f(x, y, t, u, v) \, dx \, dy \, dt \, du \, dv \approx \frac{1}{N} \sum_i f(x_i, y_i, t_i, u_i, v_i)
\]

- As before, complex backface cull check
- And can apply interval, interleaved, and tile culling algorithms...

- 24 ADDs, 25 MULs per sample test
Aperture and Shutter

f/16 1/8s

f/4 1/128s

f/2 1/500s

London and Upton
Moving Defocus Insanity

7.8M micropolygons, 720p resolution, 256 samples per pixel
Look On My Hit Rate, and Despair

<table>
<thead>
<tr>
<th>interval $n_u \times n_v \times n_{\text{time}}$</th>
<th>Render Time</th>
<th>Sample Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1x1</td>
<td>40.39s</td>
<td>2.34%</td>
</tr>
<tr>
<td>1x1x2</td>
<td>46.62s</td>
<td>2.40%</td>
</tr>
<tr>
<td>1x1x4</td>
<td>66.23s</td>
<td>1.75%</td>
</tr>
<tr>
<td>2x2x1</td>
<td>81.01s</td>
<td>1.38%</td>
</tr>
<tr>
<td>2x2x2</td>
<td>77.82s</td>
<td>2.64%</td>
</tr>
<tr>
<td>4x4x1</td>
<td>228.71s</td>
<td>2.65%</td>
</tr>
</tbody>
</table>

720p, 64 spp